Implemented Loader; Implemented Render
This commit is contained in:
2717
assets/base.css
2717
assets/base.css
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
BIN
assets/dash-logo.png
Normal file
BIN
assets/dash-logo.png
Normal file
Binary file not shown.
|
After Width: | Height: | Size: 1.4 KiB |
29
requirements.txt
Normal file
29
requirements.txt
Normal file
@@ -0,0 +1,29 @@
|
||||
Brotli==1.0.9
|
||||
certifi==2020.12.5
|
||||
chardet==3.0.4
|
||||
click==7.1.2
|
||||
dash==1.18.1
|
||||
dash-core-components==1.14.1
|
||||
dash-html-components==1.1.1
|
||||
dash-renderer==1.8.3
|
||||
dash-table==4.11.1
|
||||
Flask==1.1.2
|
||||
Flask-Compress==1.8.0
|
||||
future==0.18.2
|
||||
idna==2.10
|
||||
itsdangerous==1.1.0
|
||||
Jinja2==2.11.2
|
||||
lxml==4.6.2
|
||||
MarkupSafe==1.1.1
|
||||
multitasking==0.0.9
|
||||
numpy==1.19.3
|
||||
pandas==1.1.5
|
||||
plotly==4.14.1
|
||||
python-dateutil==2.8.1
|
||||
pytz==2020.4
|
||||
requests==2.25.0
|
||||
retrying==1.3.3
|
||||
six==1.15.0
|
||||
urllib3==1.26.2
|
||||
Werkzeug==1.0.1
|
||||
yfinance==0.1.55
|
||||
247
stockdash_loader.py
Normal file
247
stockdash_loader.py
Normal file
@@ -0,0 +1,247 @@
|
||||
import os, sys
|
||||
import pandas as pd
|
||||
import numpy as np
|
||||
import sqlalchemy
|
||||
import logging
|
||||
import traceback
|
||||
from timeit import default_timer as timer
|
||||
from datetime import datetime, timedelta
|
||||
|
||||
from sqlalchemy.ext.declarative import declarative_base
|
||||
from sqlalchemy import Column, Integer, String, DateTime
|
||||
from sqlalchemy.orm import sessionmaker
|
||||
from sqlalchemy.types import VARCHAR
|
||||
|
||||
import yfinance as yf
|
||||
|
||||
API_KEY = '44ced5e44c50543745b1d89fce8cd93a'
|
||||
api_key = "?apikey=" + API_KEY
|
||||
api_kpi_url = "https://financialmodelingprep.com/api/v3/key-metrics/"
|
||||
api_batch_stock_price_url = "https://financialmodelingprep.com/api/v3/quote/"
|
||||
|
||||
logging.basicConfig(
|
||||
level=logging.INFO,
|
||||
format="%(asctime)s [%(levelname)s] %(message)s",
|
||||
handlers=[
|
||||
logging.FileHandler("debug.log"),
|
||||
logging.StreamHandler()
|
||||
]
|
||||
)
|
||||
|
||||
Base = declarative_base()
|
||||
|
||||
data_dir = 'data'
|
||||
file_symbol = os.path.join(data_dir, 'symbols.json')
|
||||
db_symbol = "base_symbol"
|
||||
db_kpi = "base_kpi"
|
||||
db_div = "base_dividend"
|
||||
db_rec = "base_recommendation"
|
||||
db_his = "base_price_history"
|
||||
|
||||
sync_freq_kpi = 14
|
||||
sync_freq_rec = 7
|
||||
sync_freq_div = 21
|
||||
sync_freq_his = 1
|
||||
|
||||
sym_exclude = []
|
||||
engine = sqlalchemy.create_engine("mysql+pymysql://spcial:GOi1gA01@localhost:3306/app_stockdash?charset=utf8mb4")
|
||||
|
||||
|
||||
def update_timestamp(symbol, schema):
|
||||
Session = sessionmaker(bind=engine)
|
||||
session = Session()
|
||||
curr_symbol = session.query(Symbols).filter(Symbols.symbol == symbol)
|
||||
if schema == db_kpi:
|
||||
curr_symbol.update({Symbols.last_updated_kpi: datetime.now()}, synchronize_session=False)
|
||||
elif schema == db_rec:
|
||||
curr_symbol.update({Symbols.last_updated_rec: datetime.now()}, synchronize_session=False)
|
||||
elif schema == db_div:
|
||||
curr_symbol.update({Symbols.last_updated_div: datetime.now()}, synchronize_session=False)
|
||||
elif schema == db_his:
|
||||
curr_symbol.update({Symbols.last_updated_his: datetime.now()}, synchronize_session=False)
|
||||
session.commit()
|
||||
|
||||
|
||||
def update_loadable(symbol, loadable):
|
||||
Session = sessionmaker(bind=engine)
|
||||
session = Session()
|
||||
curr_symbol = session.query(Symbols).filter(Symbols.symbol == symbol)
|
||||
curr_symbol.update({Symbols.loadable: loadable}, synchronize_session=False)
|
||||
session.commit()
|
||||
|
||||
|
||||
def load_to_db(df, table_name):
|
||||
start = timer()
|
||||
|
||||
try:
|
||||
df = df.replace([np.inf, -np.inf], np.nan)
|
||||
df.to_sql(table_name, schema='app_stockdash', con=engine, if_exists='append', dtype={'symbol': VARCHAR(10)})
|
||||
except Exception as err:
|
||||
logging.warning(" <%s> Error occured when loading data to DB. Error: \n%s" % (table_name, err))
|
||||
raise
|
||||
|
||||
logging.info(" <load_to_db> comleted in %f sec! " % (timer() - start))
|
||||
|
||||
|
||||
def load_from_db(table_name, where=None, limit=None, orderby=None):
|
||||
start = timer()
|
||||
|
||||
try:
|
||||
sql = "SELECT * FROM %s " % table_name
|
||||
if where is not None:
|
||||
sql = sql + "WHERE %s " % where
|
||||
if orderby is not None:
|
||||
sql = sql + "ORDER BY %s " % orderby
|
||||
if limit is not None:
|
||||
sql = sql + "LIMIT %i " % limit
|
||||
|
||||
df = pd.read_sql_query(sql, engine)
|
||||
except sqlalchemy.exc.ProgrammingError as er:
|
||||
logging.warning(" <%s> Error occured when quering data. Return None. Error: \n%s" % (table_name, er))
|
||||
return None
|
||||
|
||||
logging.info(" <load_from_db> comleted in %f sec! " % (timer() - start))
|
||||
return df
|
||||
|
||||
|
||||
def load_symbols():
|
||||
logging.info("Loading symbols based on file %s" % file_symbol)
|
||||
df_symbols = pd.read_json(file_symbol).drop(columns=['price'])
|
||||
logging.info("Retrieved %i symbols from file" % len(df_symbols))
|
||||
|
||||
df_symbols = df_symbols[df_symbols['exchange'].isin(['Nasdaq Global Select', 'NASDAQ Global Market', 'NASDAQ Capital Market'])]
|
||||
logging.info("Using %i symbols after filtering" % len(df_symbols))
|
||||
|
||||
df_symbols["initialized"] = datetime.now()
|
||||
df_symbols["last_updated_kpi"] = pd.Timestamp.min
|
||||
df_symbols["last_updated_div"] = pd.Timestamp.min
|
||||
df_symbols["last_updated_rec"] = pd.Timestamp.min
|
||||
df_symbols["last_updated_his"] = pd.Timestamp.min
|
||||
df_symbols["loadable"] = True
|
||||
|
||||
df_existing_symbols = load_from_db(db_symbol)
|
||||
|
||||
if df_existing_symbols is not None:
|
||||
logging.info("Retrieved %i symbols from DB" % len(df_existing_symbols))
|
||||
df_diff = pd.concat([df_symbols, df_existing_symbols]).drop_duplicates(subset=['symbol'], keep=False).set_index('symbol')
|
||||
logging.info("Loading %i new symbols into DB..." % len(df_diff))
|
||||
if len(df_diff) > 0:
|
||||
load_to_db(df_diff, db_symbol)
|
||||
else:
|
||||
logging.info("Could not retrieve any symbols from DB. Expecting table does not exist. Create table...")
|
||||
load_to_db(df_symbols, db_symbol)
|
||||
|
||||
return df_symbols
|
||||
|
||||
|
||||
def synch_data():
|
||||
logging.info("Synching data. Loading available symbols from DB...")
|
||||
df_symbols = load_from_db(db_symbol, where='loadable = 1')
|
||||
num_symbols = len(df_symbols['symbol'])
|
||||
logging.info("Loaded %i symbols from DB." % num_symbols)
|
||||
final_kpi_columns = load_from_db(db_kpi, limit=1).columns
|
||||
|
||||
i = 1
|
||||
for index, row in df_symbols.iterrows():
|
||||
try:
|
||||
symbol = row['symbol']
|
||||
yticker = yf.Ticker(symbol)
|
||||
|
||||
logging.info("%s/%s Querying data for ticker %s" % (i, num_symbols, symbol))
|
||||
|
||||
# KPI
|
||||
if row['last_updated_kpi'] < datetime.today() - timedelta(days=sync_freq_kpi):
|
||||
logging.info(" <%s> Last Updated above Threshold. Loading new KPI data for symbol into DB %s" % (db_kpi, symbol))
|
||||
ticker_dict = yticker.info
|
||||
|
||||
for idx, val in ticker_dict.items():
|
||||
if type(val) != list:
|
||||
ticker_dict[idx] = [val]
|
||||
else:
|
||||
ticker_dict[idx] = [",".join(val)]
|
||||
|
||||
kpi = pd.DataFrame.from_dict(ticker_dict).set_index('symbol')
|
||||
kpi["date"] = datetime.now()
|
||||
|
||||
|
||||
kpi = kpi[kpi.columns.intersection(final_kpi_columns)]
|
||||
|
||||
load_to_db(kpi, db_kpi)
|
||||
update_timestamp(symbol, db_kpi)
|
||||
else:
|
||||
logging.info(" <%s> Data is up-to-date. Nothing to do." % db_kpi)
|
||||
|
||||
# DIVIDENDS
|
||||
if row['last_updated_div'] < datetime.today() - timedelta(days=sync_freq_div):
|
||||
logging.info(" <%s> Last Updated above Threshold. Loading new DIVIDENDS data for symbol into DB %s" % (db_div, symbol))
|
||||
div = yticker.dividends.to_frame().reset_index()
|
||||
div.insert(0, 'symbol', symbol)
|
||||
div = div.set_index('symbol')
|
||||
load_to_db(div, db_div)
|
||||
update_timestamp(symbol, db_div)
|
||||
else:
|
||||
logging.info(" <%s> Data is up-to-date. Nothing to do." % db_div)
|
||||
|
||||
# RECOMMENDATIONS
|
||||
if row['last_updated_rec'] < datetime.today() - timedelta(days=sync_freq_rec):
|
||||
logging.info(" <%s> Last Updated above Threshold. Loading new RECOMMENDATIONS data for symbol into DB %s" % (db_rec, symbol))
|
||||
rec = yticker.recommendations
|
||||
if rec is not None:
|
||||
rec = rec.reset_index()
|
||||
rec.insert(0, 'symbol', symbol)
|
||||
rec = rec.set_index('symbol').drop_duplicates(subset=['Date', 'Firm'])
|
||||
load_to_db(rec, db_rec)
|
||||
else:
|
||||
logging.info(" <%s> No recommendation data found for %s" % (db_rec, symbol))
|
||||
update_timestamp(symbol, db_rec)
|
||||
else:
|
||||
logging.info(" <%s> Data is up-to-date. Nothing to do." % db_rec)
|
||||
|
||||
# PRICE HISTORY
|
||||
if row['last_updated_his'] < datetime.today() - timedelta(days=sync_freq_his):
|
||||
if row['last_updated_his'].date() != pd.Timestamp.min.to_pydatetime().date():
|
||||
delta = (row['last_updated_his'] + timedelta(days=1)).strftime("%Y-%m-%d")
|
||||
his = yticker.history(start=delta)
|
||||
logging.info(" <%s> Last Updated above Threshold. Loading new PRICE data for symbol into DB %s since %s" % (db_his, symbol, delta))
|
||||
else:
|
||||
his = yticker.history(period="max")
|
||||
logging.info(" <%s> Never loaded price data. Loading all available price data for symbol into DB %s " % (db_his, symbol))
|
||||
|
||||
if his is not None:
|
||||
his = his.reset_index()
|
||||
his.insert(0, 'symbol', symbol)
|
||||
his = his.set_index('symbol')
|
||||
load_to_db(his, db_his)
|
||||
else:
|
||||
logging.info(" <%s> No price history data found for %s" % (db_rec, symbol))
|
||||
update_timestamp(symbol, db_his)
|
||||
else:
|
||||
logging.info(" <%s> Data is up-to-date. Nothing to do." % db_his)
|
||||
|
||||
i += 1
|
||||
except Exception as er:
|
||||
logging.warning("%s/%s Error occured - skipping this entry. Errormsg: \n%s" % (
|
||||
i, num_symbols, traceback.print_exception(*sys.exc_info())))
|
||||
update_loadable(symbol, 0)
|
||||
i += 1
|
||||
continue
|
||||
|
||||
|
||||
class Symbols(Base):
|
||||
__tablename__ = db_symbol
|
||||
|
||||
index = Column(Integer, primary_key=True)
|
||||
symbol = Column(String)
|
||||
name = Column(String)
|
||||
exchange = Column(String)
|
||||
initialized = Column(String)
|
||||
last_updated_kpi = Column(DateTime)
|
||||
last_updated_div = Column(DateTime)
|
||||
last_updated_rec = Column(DateTime)
|
||||
last_updated_his = Column(DateTime)
|
||||
loadable = Column(Integer)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
load_symbols()
|
||||
synch_data()
|
||||
@@ -1,115 +0,0 @@
|
||||
import os
|
||||
import pandas as pd
|
||||
import json
|
||||
from datetime import datetime
|
||||
import time
|
||||
|
||||
import stockdash_render
|
||||
import yfinance as yf
|
||||
|
||||
API_KEY = '44ced5e44c50543745b1d89fce8cd93a'
|
||||
api_key = "?apikey=" + API_KEY
|
||||
api_kpi_url = "https://financialmodelingprep.com/api/v3/key-metrics/"
|
||||
api_batch_stock_price_url = "https://financialmodelingprep.com/api/v3/quote/"
|
||||
|
||||
data_dir = 'data'
|
||||
file_symbol = os.path.join(data_dir, 'symbols.json')
|
||||
file_kpi = os.path.join(data_dir, 'comp_kpi.csv')
|
||||
file_div = os.path.join(data_dir, 'comp_div.csv')
|
||||
file_rec = os.path.join(data_dir, 'comp_rec.csv')
|
||||
file_his = os.path.join(data_dir, 'comp_his.csv')
|
||||
|
||||
sym_exclude = []
|
||||
used_columns = ['symbol', 'shortName', 'sector', 'industry', 'country', 'marketCap', 'enterpriseValue', 'dividendRate',
|
||||
'trailingPE', 'forwardPE', 'enterpriseToEbitda', 'shortRatio']
|
||||
|
||||
|
||||
def load_symbols():
|
||||
symbols = []
|
||||
with open(file_symbol) as json_file:
|
||||
data = json.load(json_file)
|
||||
for sym in data:
|
||||
if 'exchange' in sym and sym['exchange'] == 'Nasdaq Global Select' and sym['symbol'] not in sym_exclude:
|
||||
symbols.append(sym['symbol'])
|
||||
return symbols
|
||||
|
||||
|
||||
def get_data(symbols):
|
||||
tickers = yf.Tickers(' '.join(symbols))
|
||||
|
||||
if os.path.exists(file_kpi) and os.path.exists(file_div) and os.path.exists(file_rec) and os.path.exists(file_his):
|
||||
print("Found cached files. Loading cache...")
|
||||
kpi_data = pd.read_csv(file_kpi)
|
||||
print("%s KPIs loaded..." % len(kpi_data))
|
||||
div_data = pd.read_csv(file_div)
|
||||
print("%s Dividends loaded..." % len(div_data))
|
||||
rec_data = pd.read_csv(file_rec)
|
||||
print("%s Recommendations loaded..." % len(rec_data))
|
||||
his_data = pd.read_csv(file_his)
|
||||
print("%s Price History loaded..." % len(his_data))
|
||||
else:
|
||||
kpi_data, div_data, rec_data, his_data = pd.DataFrame(), pd.DataFrame(), pd.DataFrame(), pd.DataFrame()
|
||||
i = 1
|
||||
for ticker in tickers.tickers:
|
||||
try:
|
||||
info = ticker.info
|
||||
print("%s/%s Querying data for ticker %s" % (i, len(symbols), info['symbol']))
|
||||
kpi_data = kpi_data.append(info, ignore_index=True)
|
||||
|
||||
div = ticker.dividends.to_frame().reset_index()
|
||||
div.insert(0, 'Symbol', info['symbol'])
|
||||
div_data = div_data.append(div, ignore_index=True)
|
||||
|
||||
rec = ticker.recommendations.reset_index()
|
||||
rec.insert(0, 'Symbol', info['symbol'])
|
||||
rec_data = rec_data.append(rec, ignore_index=True)
|
||||
|
||||
his = ticker.history(period='5y').reset_index()
|
||||
his.insert(0, 'Symbol', info['symbol'])
|
||||
his_data = his_data.append(his, ignore_index=True)
|
||||
i += 1
|
||||
except Exception:
|
||||
print("Error occured when quering %s - skipping this entry")
|
||||
continue
|
||||
|
||||
kpi_data = kpi_data[['symbol'] + [col for col in kpi_data.columns if col != 'symbol']]
|
||||
|
||||
rec_data['Date'] = pd.to_datetime(rec_data['Date'])
|
||||
|
||||
his_data['priceMA50'] = his_data['Close'].rolling(window=50).mean()
|
||||
his_data['priceMA200'] = his_data['Close'].rolling(window=200).mean()
|
||||
his_data['diffMA50_200'] = his_data['priceMA50'] - his_data['priceMA200']
|
||||
|
||||
kpi_data.to_csv(file_kpi)
|
||||
div_data.to_csv(file_div)
|
||||
rec_data.to_csv(file_rec)
|
||||
his_data.to_csv(file_his)
|
||||
|
||||
return kpi_data, div_data, rec_data, his_data
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
start_time = time.time()
|
||||
print("----- Starting STOCKDASH @ %s -----" % datetime.fromtimestamp(start_time))
|
||||
used_symbols = load_symbols()
|
||||
|
||||
print("%s symbols loaded from file" % len(used_symbols))
|
||||
kpi_data, div_data, rec_data, his_data = get_data(used_symbols[:100])
|
||||
|
||||
# Modify Recommendation Data
|
||||
rec_data_mod = pd.concat([rec_data, pd.get_dummies(rec_data['To Grade'], prefix='grade')], axis=1)
|
||||
rec_data_mod.drop(['To Grade', 'From Grade', 'Action'], axis=1, inplace=True)
|
||||
rec_data_mod['Date'] = pd.to_datetime(rec_data_mod['Date'])
|
||||
df2 = rec_data_mod.groupby([pd.Grouper(key='Date', freq='Y'), pd.Grouper('Symbol')]).agg(['sum'])
|
||||
|
||||
df2['Positive'] = df2['grade_Buy'] + df2['grade_Outperform'] + df2['grade_Market Outperform'] + df2[
|
||||
'grade_Overweight'] + df2['grade_Positive'] + df2['grade_Strong Buy']
|
||||
df2['Neutral'] = df2['grade_Equal-Weight'] + df2['grade_Hold'] + df2['grade_Neutral']
|
||||
df2['Negative'] = df2['grade_Market Underperform'] + df2['grade_Reduce'] + df2['grade_Sell'] + df2[
|
||||
'grade_Underweight']
|
||||
|
||||
columns = ['Positive', 'Neutral', 'Negative']
|
||||
rec_data_mod = df2[columns]
|
||||
|
||||
print("Data loaded after %ss" % (time.time()-start_time))
|
||||
stockdash_render.load_dash(kpi_data[used_columns], rec_data_mod, div_data, his_data)
|
||||
@@ -1,6 +1,7 @@
|
||||
from datetime import datetime
|
||||
import time
|
||||
|
||||
import flask
|
||||
import pandas as pd
|
||||
import dash_table
|
||||
import plotly.graph_objects as go
|
||||
import dash_core_components as dcc
|
||||
@@ -8,18 +9,24 @@ import dash_html_components as html
|
||||
from dash import Dash
|
||||
from dash_table.Format import Format
|
||||
from dash.dependencies import Input, Output
|
||||
from plotly.subplots import make_subplots
|
||||
import stockdash_loader as sdl
|
||||
|
||||
colorway = ["#9a58cc", '#FF4F00', '#375CB1', '#FF7400', '#FFF400', '#FF0056']
|
||||
colorway = ["lightslategray", '#FF4F00', '#375CB1', '#FF7400', '#FFF400', '#FF0056']
|
||||
used_columns = ['symbol', 'shortName', 'sector', 'industry', 'country', 'marketCap', 'enterpriseValue', 'dividendRate',
|
||||
'trailingPE', 'forwardPE', 'enterpriseToEbitda', 'shortRatio']
|
||||
PAGE_SIZE = 20
|
||||
|
||||
app = Dash(__name__)
|
||||
server = app.server
|
||||
|
||||
def load_dash(comp_kpi, rec_data_mod, div_data, his_data):
|
||||
start_time = time.time()
|
||||
print(" -- Rendering STOCKDASH @ %s -----" % datetime.fromtimestamp(start_time))
|
||||
start_time = time.time()
|
||||
print("----- Starting STOCKDASH @ %s -----" % datetime.fromtimestamp(start_time))
|
||||
kpi_data = sdl.load_from_db(sdl.db_kpi, orderby="marketCap DESC")
|
||||
print("Data loaded after %ss" % (time.time()-start_time))
|
||||
comp_kpi = kpi_data[used_columns]
|
||||
|
||||
app = Dash(__name__)
|
||||
|
||||
app.layout = html.Div(children=[
|
||||
app.layout = html.Div(children=[
|
||||
html.Div(className='row',
|
||||
children=[html.Div(className='three columns div-user-controls',
|
||||
children=[
|
||||
@@ -37,7 +44,12 @@ def load_dash(comp_kpi, rec_data_mod, div_data, his_data):
|
||||
style={'backgroundColor': '#1E1E1E'},
|
||||
className='stockselector')
|
||||
],
|
||||
style={'color': '#1E1E1E'})
|
||||
style={'color': '#1E1E1E'}),
|
||||
html.P(id="total-stocks"),
|
||||
dcc.Markdown(
|
||||
children=[
|
||||
"Source: [thiessen.io](https://www.thiessen.io)"
|
||||
])
|
||||
]),
|
||||
html.Div(className='nine columns div-for-charts bg-grey',
|
||||
style={'padding': 0},
|
||||
@@ -84,7 +96,7 @@ def load_dash(comp_kpi, rec_data_mod, div_data, his_data):
|
||||
id='bar-chart-marketcap',
|
||||
className='bg-grey',
|
||||
hoverData={'points': [{'x': 'AAPL'}]},
|
||||
animate=True),
|
||||
animate=False),
|
||||
dcc.Graph(
|
||||
id='timeseries-chart-price',
|
||||
className='bg-grey',
|
||||
@@ -94,15 +106,17 @@ def load_dash(comp_kpi, rec_data_mod, div_data, his_data):
|
||||
id='recom-bar-chart',
|
||||
className='bg-grey',
|
||||
config={'displayModeBar': False},
|
||||
animate=True)
|
||||
])
|
||||
animate=False)
|
||||
])
|
||||
])
|
||||
])
|
||||
|
||||
@app.callback(Output('bar-chart-marketcap', 'figure'),
|
||||
|
||||
@app.callback(Output('bar-chart-marketcap', 'figure'),
|
||||
[Input('company-kpi-data', 'data'),
|
||||
Input('stockselector', 'value')])
|
||||
def update_graph(data, selected_columns):
|
||||
Input('stockselector', 'value'),
|
||||
Input('bar-chart-marketcap', 'clickData')])
|
||||
def update_graph(data, selected_columns, clickData):
|
||||
used_symbols = [x['symbol'] for x in data]
|
||||
|
||||
figure = go.Figure(
|
||||
@@ -124,6 +138,7 @@ def load_dash(comp_kpi, rec_data_mod, div_data, his_data):
|
||||
figure.add_trace(go.Bar(name=column,
|
||||
x=used_symbols,
|
||||
y=[x[column] for x in data],
|
||||
marker_color=['lightslategray',] * len(data),
|
||||
yaxis='y' + str(i), offsetgroup=i))
|
||||
|
||||
val["yaxis%s" % i] = dict(
|
||||
@@ -143,14 +158,14 @@ def load_dash(comp_kpi, rec_data_mod, div_data, his_data):
|
||||
anchor="free",
|
||||
overlaying="y",
|
||||
side="left",
|
||||
position=0.05
|
||||
position=0.10
|
||||
))
|
||||
elif i == 4:
|
||||
val["yaxis4"].update(dict(
|
||||
anchor="free",
|
||||
overlaying="y",
|
||||
side="right",
|
||||
position=0.95
|
||||
position=0.90
|
||||
))
|
||||
|
||||
figure.update_layout(val)
|
||||
@@ -158,15 +173,49 @@ def load_dash(comp_kpi, rec_data_mod, div_data, his_data):
|
||||
showgrid=True, zeroline=True, zerolinewidth=1, zerolinecolor='White',
|
||||
)
|
||||
|
||||
if clickData is not None:
|
||||
i = 0
|
||||
for subFig in figure['data']:
|
||||
color=[colorway[i],] * len(data)
|
||||
color[clickData['points'][0]['pointNumber']] = 'crimson'
|
||||
|
||||
subFig['marker']['color'] = color
|
||||
i = i +1
|
||||
|
||||
return figure
|
||||
|
||||
@app.callback(Output('recom-bar-chart', 'figure'),
|
||||
|
||||
@app.callback(Output("total-stocks", "children"),
|
||||
[Input('company-kpi-data', 'data')])
|
||||
def update_graph(data):
|
||||
def update_total_stocks(data):
|
||||
stocks_picked = len(comp_kpi)
|
||||
return "Total Number of Stocks loaded: %s" % stocks_picked
|
||||
|
||||
|
||||
@app.callback(Output('recom-bar-chart', 'figure'),
|
||||
[Input('company-kpi-data', 'data')])
|
||||
def update_graph(data):
|
||||
used_symbols = [x['symbol'] for x in data]
|
||||
|
||||
# Modify Recommendation Data
|
||||
where_clause = "symbol IN ('"+"','".join(used_symbols)+"')"
|
||||
rec_data = sdl.load_from_db(sdl.db_rec, where=where_clause)
|
||||
rec_data_mod = pd.concat([rec_data, pd.get_dummies(rec_data['To Grade'], prefix='grade')], axis=1)
|
||||
rec_data_mod.drop(['To Grade', 'From Grade', 'Action'], axis=1, inplace=True)
|
||||
rec_data_mod['Date'] = pd.to_datetime(rec_data_mod['Date'])
|
||||
df2 = rec_data_mod.groupby([pd.Grouper(key='Date', freq='Y'), pd.Grouper('symbol')]).agg(['sum'])
|
||||
|
||||
df2['Positive'] = df2['grade_Buy'] + df2['grade_Outperform'] + df2['grade_Market Outperform'] + df2[
|
||||
'grade_Overweight'] + df2['grade_Positive'] + df2['grade_Strong Buy']
|
||||
df2['Neutral'] = df2['grade_Equal-Weight'] + df2['grade_Hold'] + df2['grade_Neutral']
|
||||
df2['Negative'] = df2['grade_Market Underperform'] + df2['grade_Reduce'] + df2['grade_Sell'] + df2[
|
||||
'grade_Underweight']
|
||||
|
||||
columns = ['Positive', 'Neutral', 'Negative']
|
||||
rec_data_mod = df2[columns]
|
||||
|
||||
df = rec_data_mod.loc['2020-12-31'].reset_index()
|
||||
df_tmp = df.loc[df['Symbol'].isin(used_symbols)]
|
||||
df_tmp = df.loc[df['symbol'].isin(used_symbols)]
|
||||
|
||||
figure = go.Figure(layout=go.Layout(
|
||||
colorway=colorway,
|
||||
@@ -180,48 +229,119 @@ def load_dash(comp_kpi, rec_data_mod, div_data, his_data):
|
||||
barmode='stack'
|
||||
))
|
||||
|
||||
figure.add_trace(go.Bar(x=used_symbols, y=df_tmp['Positive'].tolist(), name='Positive Outlook', marker_color='#41B3A3'))
|
||||
figure.add_trace(go.Bar(x=used_symbols, y=df_tmp['Neutral'].tolist(), name='Neutral Outlook', marker_color='#E8A87C'))
|
||||
figure.add_trace(go.Bar(x=used_symbols, y=df_tmp['Negative'].tolist(), name='Negative Outlook', marker_color='#E27D60'))
|
||||
figure.add_trace(
|
||||
go.Bar(x=used_symbols, y=df_tmp['Positive'].tolist(), name='Positive Outlook', marker_color='#41B3A3'))
|
||||
figure.add_trace(
|
||||
go.Bar(x=used_symbols, y=df_tmp['Neutral'].tolist(), name='Neutral Outlook', marker_color='#E8A87C'))
|
||||
figure.add_trace(
|
||||
go.Bar(x=used_symbols, y=df_tmp['Negative'].tolist(), name='Negative Outlook', marker_color='#E27D60'))
|
||||
|
||||
return figure
|
||||
|
||||
@app.callback(Output('timeseries-chart-price', 'figure'),
|
||||
[Input('bar-chart-marketcap', 'hoverData')])
|
||||
def update_graph(hoverData):
|
||||
trace1 = []
|
||||
columns = ['Close', 'priceMA50', 'priceMA200']
|
||||
df_sub = his_data[his_data['Symbol'] == hoverData['points'][0]['x']]
|
||||
|
||||
@app.callback(Output('timeseries-chart-price', 'figure'),
|
||||
Input('bar-chart-marketcap', 'clickData'),
|
||||
Input('company-kpi-data', 'data'))
|
||||
def update_graph(clickData, kpi_data):
|
||||
if clickData is None:
|
||||
used_symbol = kpi_data[0]['symbol']
|
||||
else:
|
||||
used_symbol = clickData['points'][0]['x']
|
||||
|
||||
where_clause = "symbol = '%s'" % used_symbol
|
||||
his_data = sdl.load_from_db(sdl.db_his, where=where_clause, limit=1000, orderby="Date DESC")
|
||||
where_clause = "symbol = '%s' and Date >= '%s'" % (used_symbol, his_data['Date'].min())
|
||||
div_data = sdl.load_from_db(sdl.db_div, where=where_clause, orderby="Date DESC")
|
||||
|
||||
# Calculate rolling window
|
||||
his_data['priceMA50'] = his_data['Close'].rolling(window=50, min_periods=1).mean()
|
||||
std_dev = his_data['Close'].rolling(window=50, min_periods=1).std()
|
||||
|
||||
his_data['priceMA50_lstd'] = his_data['priceMA50'] - 2*std_dev
|
||||
his_data['priceMA50_hstd'] = his_data['priceMA50'] + 2*std_dev
|
||||
his_data['priceMA200'] = his_data['Close'].rolling(window=200, min_periods=1).mean()
|
||||
his_data['diffMA50_200'] = his_data['priceMA50'] - his_data['priceMA200']
|
||||
|
||||
fig = make_subplots(rows=3, cols=1, row_heights=[0.7, 0.2, 0.1], shared_xaxes=True, vertical_spacing=0.07)
|
||||
|
||||
fig.add_trace(go.Candlestick(x=his_data['Date'], open=his_data['Open'], high=his_data['High'], low=his_data['Low'],
|
||||
close=his_data['Close'], name=used_symbol), row=1, col=1)
|
||||
|
||||
columns = ['priceMA50', 'priceMA200']
|
||||
for column in columns:
|
||||
trace1.append(go.Scatter(x=df_sub['Date'],
|
||||
y=df_sub[column],
|
||||
mode='lines',
|
||||
opacity=0.7,
|
||||
name=hoverData['points'][0]['x'] + "-" + column,
|
||||
textposition='bottom center'))
|
||||
fig.add_trace(go.Scatter(x=his_data['Date'], y=his_data[column], mode='lines', opacity=0.7,
|
||||
name=used_symbol + "-" + column, textposition='bottom center'),
|
||||
row=1, col=1)
|
||||
|
||||
traces = [trace1]
|
||||
data = [val for sublist in traces for val in sublist]
|
||||
figure = {'data': data,
|
||||
'layout': go.Layout(
|
||||
fig.add_trace(go.Scatter(x=his_data['Date'], y=his_data['priceMA50_lstd'], mode='lines', opacity=0.7, line=dict(color='#ffdd70', width=1, dash='dash'),
|
||||
name=used_symbol + "-" + 'Lower Band', textposition='bottom center'),
|
||||
row=1, col=1)
|
||||
|
||||
fig.add_trace(go.Scatter(x=his_data['Date'], y=his_data['priceMA50_hstd'], mode='lines', opacity=0.7, line=dict(color='#ffdd70', width=1, dash='dash'),
|
||||
name=used_symbol + "-" + 'Higher Band', textposition='bottom center'),
|
||||
row=1, col=1)
|
||||
|
||||
fig.update_yaxes(showgrid=True, zeroline=False,
|
||||
showspikes=True, spikemode='across', spikesnap='cursor', showline=False, spikedash='solid')
|
||||
|
||||
fig.update_xaxes(showgrid=True, zeroline=False, rangeslider_visible=False, showticklabels=False,
|
||||
showspikes=True, spikemode='across', spikesnap='cursor', showline=False, spikedash='solid',
|
||||
rangebreaks=[
|
||||
dict(bounds=["sat", "mon"]), #hide weekends
|
||||
#dict(values=["2015-12-25", "2016-01-01"]) # hide Christmas and New Year's
|
||||
])
|
||||
|
||||
fig.update_layout(
|
||||
colorway=colorway,
|
||||
template='plotly_dark',
|
||||
paper_bgcolor='rgba(0, 0, 0, 0)',
|
||||
plot_bgcolor='rgba(0, 0, 0, 0)',
|
||||
margin={'b': 15},
|
||||
hovermode='x',
|
||||
autosize=True,
|
||||
|
||||
height=800,
|
||||
hovermode='x unified',
|
||||
hoverlabel=dict(font=dict(color='black')),
|
||||
title={'text': 'Stock Prices', 'font': {'color': 'white'}, 'x': 0.5},
|
||||
xaxis={'range': [df_sub['Date'].min(), df_sub['Date'].max()]},
|
||||
yaxis={'range': [0, df_sub['Close'].max() + df_sub['Close'].max() / 10]}
|
||||
),
|
||||
}
|
||||
xaxis={'range': [his_data['Date'].min(), his_data['Date'].max()],
|
||||
'showticklabels': True,
|
||||
'rangeselector_bgcolor':'rgba(0, 22, 0, 0)',
|
||||
'rangeselector': dict(
|
||||
buttons=list([
|
||||
dict(count=1,
|
||||
label="1m",
|
||||
step="month",
|
||||
stepmode="backward"),
|
||||
dict(count=6,
|
||||
label="6m",
|
||||
step="month",
|
||||
stepmode="backward"),
|
||||
dict(count=1,
|
||||
label="YTD",
|
||||
step="year",
|
||||
stepmode="todate"),
|
||||
dict(count=1,
|
||||
label="1y",
|
||||
step="year",
|
||||
stepmode="backward"),
|
||||
dict(step="all")
|
||||
]))},
|
||||
yaxis1={'autorange': True, 'fixedrange': False},
|
||||
legend=dict(y=1, x=0),
|
||||
dragmode='pan')
|
||||
|
||||
return figure
|
||||
fig.add_trace(
|
||||
go.Bar(x=his_data['Date'], y=his_data['Volume'], marker_color='#3399ff', name='Volume'),
|
||||
row=2, col=1)
|
||||
|
||||
def split_filter_part(filter_part):
|
||||
fig.add_trace(
|
||||
go.Scatter(x=div_data['Date'], y=div_data['Dividends'], marker_color='#fae823', name='Dividends', line=dict(
|
||||
shape='hv'
|
||||
)),
|
||||
row=3, col=1)
|
||||
|
||||
return fig
|
||||
|
||||
|
||||
def split_filter_part(filter_part):
|
||||
operators = [['ge ', '>='],
|
||||
['le ', '<='],
|
||||
['lt ', '<'],
|
||||
@@ -251,13 +371,13 @@ def load_dash(comp_kpi, rec_data_mod, div_data, his_data):
|
||||
return name, operator_type[0].strip(), value
|
||||
return [None] * 3
|
||||
|
||||
@app.callback(
|
||||
@app.callback(
|
||||
Output('company-kpi-data', "data"),
|
||||
Input('company-kpi-data', "page_current"),
|
||||
Input('company-kpi-data', "page_size"),
|
||||
Input('company-kpi-data', "sort_by"),
|
||||
Input('company-kpi-data', 'filter_query'))
|
||||
def update_table(page_current, page_size, sort_by, filter):
|
||||
def update_table(page_current, page_size, sort_by, filter):
|
||||
filtering_expressions = filter.split(' && ')
|
||||
dff = comp_kpi
|
||||
for filter_part in filtering_expressions:
|
||||
@@ -284,5 +404,5 @@ def load_dash(comp_kpi, rec_data_mod, div_data, his_data):
|
||||
size = page_size
|
||||
return dff.iloc[page * size: (page + 1) * size].to_dict('records')
|
||||
|
||||
print("Rendering loaded after %ss" % (time.time()-start_time))
|
||||
app.run_server(debug=True)
|
||||
|
||||
app.run_server(debug=True, port=18051, threaded=True)
|
||||
|
||||
Reference in New Issue
Block a user